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Abstract. For solving the All Pair Similarity Search (APSS) problem efficiently, this paper provides a maximum dimension partitioning approach to effectively filter non-similar pairs in an early stage. At first, for each data point, the dimension with the maximum value is used to decide the corresponding segment of data partition. An adjusting method is designed to balance the number of elements in each data segment. The similar pairs consist of inter-segment similar pairs and intra-segment similar pairs, where most effort of computing APSS comes from the computation of finding inter-segment similar pairs. For speeding up the computation, a pilot-vector is used to represent each segment for estimating the upper bound of similarity between each segment pair. Only the segment pairs, whose upper bounds of similarity are larger than the given similarity threshold, need to generate the inter-segment data pairs as candidates. Moreover, based on the proposed partitioning method, we designed a MapReduce framework to solve the APSS problem in parallel. The performance evaluation results show the proposed method provides better pruning effectiveness on non-similar data pairs than the related works. Moreover, the proposed partition-based method can properly fit into the MapReduce programming scheme to effectively reduce the response time of solving the APSS problem. 

1. Introduction

In real-world applications of data mining, a crucial problem is to perform similarity search, such as collaborative filtering for similarity-based recommendations, near duplicate document detection, and coalitions of click fraudster identification. Given a function Sim(x, y) and a similarity threshold t, a similarity search aims to find all objects in a dataset with a similarity value of at least t compared to a query object. The All Pair Similarity Search (APSS) problem performs a similarity search for each object in a dataset to find all similar pairs in the dataset. 

A data object in an application is generally numerically represented by a high dimensional vector, where each dimension is a feature extracted from the object. Suppose that the dataset consists of n objects and each object has a m dimensional feature vector. The time complexity of a brute force algorithm for APSS is O(mn2), which is infeasible in practice. Accordingly, there have been many works studied how to improve the performance efficiency for solving APSS [1, 2, 3, 5, 9, 12, 14]. In order to reduce the computation cost of solving APSS, it is necessary to effectively reduce the search space of the problem. In other words, it requires some pruning strategies to reduce the number of generated data pairs which need similarity computation. The cost of a pruning strategy is count into the total cost for solving the problem. Therefore, the pruning strategy should be both effective and efficient. Moreover, to develop a parallelized approach for reducing response time is the recent direction for solving the issue of huge amount of data [10][11][15].
For solving the All Pair Similarity Search (APSS) problem efficiently, this paper provides a maximum dimension partitioning approach to effectively filter non-similar pairs in an early stage. At first, for each data point, the dimension with the maximum value is used to decide the corresponding segment of data partition. An adjusting method is designed to balance the number of elements in each data segment. The similar pairs consist of inter-segment similar pairs and intra-segment similar pairs, where most effort of computing APSS comes from the computation of finding inter-segment similar pairs. For speeding up the computation, a pilot-vector is used to represent each segment for estimating the upper bound of similarity between each segment pair. Only the segment pairs, whose upper bounds of similarity are larger than the given similarity threshold, need to generate the inter-segment data pairs as candidates. Moreover, the prefix filtering strategy is used to improve the efficiency of computing similarity of both segment pairs and intra-segment data pairs. Based on the partitioning method, we designed a MapReduce framework to solve the problem in parallel. The performance evaluation results show the proposed method provides better pruning effectiveness on non-similar data pairs than the related works. Moreover, the proposed partition-based method can properly fit into the MapReduce programming scheme to effectively reduce the response time of solving the APSS problem.
This paper is organized as follows. The problem definition and related work are introduced in Section 2. In Section 3, the details of the proposed partitioning method and the pruning strategy are introduced. The MapReduce extension is proposed in Section 4. The performance evaluation on the proposed methods and related works is reported in Section 5. Finally, in Section 6, we conclude this paper.

2. Preliminaries and Related Work
2.1 Problem Definition

Let D = {d1 , d2 , d3,…, dn} denote a set of data, where each data di is represented by a m dimensional vector di = <di[1], di[2], di[3],…di[m]>. It is assumed that each vector is normalized. Accordingly, the similarity score between two data di and dj is computed by the cosine-similarity function as follows:

Sim(di, dj) = 
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Given a threshold t, two vectors di and dj form a similar pair if their similarity score is larger than or equal to the threshold value t, i.e. Sim(di, dj) ≥ t.
The All Pair Similarity Search (APSS) problem is to find all (di, dj) pairs, where di, dj(D and Sim(di, dj) ≥ t.
2.2 
Related Work
When a dataset consists of high-dimensional data vectors, it is costly to perform similarity computation for data pairs. Accordingly, many strategies were designed to approximately estimate the similarity of a pair of data with the assistance of an inverted list index on the dataset [2][4][5]. In order to save the computation time, when the partially computed similarity value of a data pair can decide that the pair is dissimilar, it is not necessary to compute all dimensions of the feature vectors for getting the exact similarity of the pair.
An inverted list is a data structure of indexing, for each feature dimension f, which constructs a linked list to store the object identifiers with a non-zero value on the dimension. It is the most popular data structure used in document retrieval systems for finding documents containing a query keyword. The studies in [5] and [6] considered that it is not necessarily to build a complete inverted index over the vector input. In [5], for a data object x, its cumulative estimated similarity on features with other objects is computed. The suffix feature values of x start being indexed only when the cumulative estimated similarity with other objects has reached the similarity threshold t. Besides, the prefix filtering principle was proposed to reduce the generated candidate pool size. Bayardo et. al [5] showed that, by using this method, the indexed feature values of the object x are enough to identify any object y that is potentially similar to x during the similarity search. [2] applied the Cauchy-Schwarz inequality to provide l 2-norm filtering. The l 2-norm was used to improve the estimation bound of similarity between feature vectors for getting a smaller inverted index size and pruning more candidates of APSS. However, to compute l 2-norm is costly for a high-dimensional dataset. [4] extended the prefix-filtering strategy in [5] for solving the Incremental All Pair Similarity Search (IAPSS) problem, which performs APSS multiple times over the same dataset by varying the similarity threshold. The previously mentioned works focused on reducing candidates of APSS, but obtaining better pruning effect in candidate generation may cause much processing effort. Accordingly, [12] aimed to decrease the computational cost of candidate generation by reducing the number of indexed objects. [16] also stated that the length of inverted index has significant effect on processing efficiency, i.e. prefix filtering does not always achieve high performance. Therefore, a cost model was proposed to decide the length of its prefix index for each object. 

The key idea of Locality-sensitive hashing (LSH) methods is to hash the points using several hash functions so as to ensure that, for the vectors hashed into one bucket, the probabilities of similar pairs are much higher than non-similar pairs [9][13]. Since the Locality-sensitive hashing (LSH) approach groups similar vectors into one bucket with approximation, it has a trade-off between precision and recall. Besides, redundant computation occurs when multiple hash functions are used. The study [4] provided an exact algorithm to perform set-similarity join. The algorithm first generates signatures for input sets, where all pairs of sets whose signatures have overlap are candidates to find the similarity set pairs. Its experiments showed that, when inverted indexing and computation filtering methods are applied, the exact algorithm performs competitive to LSH.
In recent years, many studies solved the APSS by parallel processing for reducing the response time, mostly by providing a MapReduce framework [8, 10, 11, 15]. [8] implemented a basic algorithm for APSS, which consists of two separate MapReduce jobs: 1) construct the inverted list, 2) compute the similarities of data pairs according to the inverted list. Furthermore, three variations are provided to prune the non-similar pairs early from the computation for reducing its cost. [11] proposed the V-SMART-Join framework, which consists of two phases of MapReduce processing: the first phase generates the candidate pairs and the second phase computes the similarity between all candidate pairs according to the constructed inverted index. The MapReduce framework proposed in [15] introduces a partitioning method where a data pre-processing phase first selects random points as centroids and the data points are assigned to the nearest centroid for computing centroid statistics. In the Similarity computation phase, the original dataset as well as the centroid statistics are read to construct the independent work sets, i.e. the set pairs for generating candidate pairs. Besides, an optional repartitioning step is used to enhance the load-balancing of the partitioning before computing similar pairs from the work sets. 
[1] considered that most parallel methods of APSS using an inverted index to perform computation filtering suffer from excessive I/O and communication overhead of the intermediate partial results. Accordingly, a partition-based approach was proposed to solve APSS in parallel. This approach statically groups data vectors into partitions such that the dissimilar partitions can be revealed in an early stage to avoid unnecessary data loading and comparison. There are two steps to perform partitioning in [1]. The first step is to sort the data vectors according to their l 1-norm values in a non-decreasing order. The ordered list of data vectors is divided evenly into consecutive groups. In the second step, for the i-th group Gi, its vectors are further divided into i disjoint subgroups Gi,1;Gi;2; … ;and Gi;i  such that the vectors in Gi,j, where j ( i, must be dissimilar with Gk for each k(j. For each data vector d in Gi, maxw(d) denote the maximum value in d. Besides, Leader(Gj) denote the vector in Gj with the maximum l1-norm length. It is induced that Sim(Gj, d) ≤ maxw(d) ( Leader(Gj). Therefore, maxw(d) × Leader(Gj) is an estimation for the upper bound of similarity between d  and the vectors in Gj. If maxw(d) ( Leader(Gj) is less than the similarity threshold t, it implies that d is dissimilar with all the vectors in Gj such that d is assigned to Gij. From the generated groups, except for the group pairs whose vectors are sure dissimilar to each other, the other group pairs need to generate inter-group data pairs as candidates of APSS. The intra-group data pairs generated in each group are also candidate of APSS. Furthermore, Sim(di, dj) ≤ min(maxw(di) (||dj||1, maxw(dj)(||di||1) is used estimate the upper bound of similarity for pruning the dissimilar data pairs in the candidates. Finally, the remained data pairs need exactly compute their similarities to find similar pairs. [14] applies ||di||r(||dj||s to estimate the upper bound of similarity between di and dj to identify more dissimilar vectors. Besides, the work aimed to solve the problem of load balance for [1] and tried to reduce the size gap among partitions. The partition-based approach is a good strategy for pruning non-similar pairs in an early stage. However, the weakness of the PSS (Partition-based Similarity Search) method in [1] and [14] occurs when applying to high dimensional vectors. As the dimension of vectors grows, the maximum l1-norm length of the normalized vectors will grow as well. Accordingly, in most cases, the estimated upper bound of similarity in [1] is much higher than the exact similarity value. It causes the effectiveness of pruning dissimilar group pairs not well.
To summarize the above related works, this paper would combine the benefits of 2-level pruning strategies for speeding up the processing of APSS. We proposed a new static data partitioning in data pre-processing to reduce similarity computation of inter-segment data pairs, which improve the weakness of the PSS method [1]. Our proposed approach also applied the inverted index to perform dynamic filtering but requires less communication cost in a MapReduce framework.
3. A Partition-based approach for Solving APSS

In the maximum partitioning approach, the processing is divided into 4 main tasks for computation: 1) data partitioning, 2) find intra-segment similar data pairs, 3) generate candidate segment pairs, 4) prune inter-segment dissimilar data pairs and find inter-segment similar pairs. The strategies provided for processing each task are described in the following subsections.
3.1 Partitioning Method

According to the definition of cosine similarity, it is more likely that two vectors are similar if the maximum values in their vectors are located on the same dimension. Therefore, in our partitioning strategy, the vectors with the same maximum dimension are initially assigned to the same segment. There are three steps in the proposed partitioning method: 1) dimension reordering, 2) maximum-dimension partitioning, and 3) pilot vector computation.
Step 1: Dimension reordering

For each data dimension fi, the number of data objects in D whose fi has a non-zero value is counted, which is denoted as non-zero-count(fi). The dimensions of the data objects in D are re-ordered by their non-zero-count values in descending order. 

For example, in the sample dataset shown in Table 1, the non-zero-count values of dimensions f1, f2, f3, and f4 are 4, 3, 4, and 2, respectively. Therefore, the dimensions are reordered as f1, f3, f2, and f4.
Step 2: Maximum-dimension partitioning 
For each data object di, find its dimension with the maximum value, denoted as maxf(di). The data objects with the same maxf value are assigned to the same segment. The partitioning result of the sample dataset D is shown in Table 2.

Step 3: Pilot vector computation
For each segment Si, its pilot vector Si.pilot is defined as follows:

 Si.pilot[fj] = max(dk[fj] | ∀dk∈Si)  for j = 1,…, m.
According to the partitioning result shown in Table 2, the pilot vectors of the three segments are shown as Table 3.

The number of the initial generated segments by the maximum-dimension partitioning method depends on the distribution of data. Accordingly, we provide the following adjusting methods to control the number of the generated segments.

1) Increase the number of segments:
The segment with the maximum number of data objects, say Si, is selected to be divided into two segments. The data objects in Si are sorted in decreasing order according to the l1-norm length of their vectors. Then Si is divided into two segments with equal size at the middle of the sorted objects. If there is more than one segment with the maximum number of data objects, let max_1-norm(S) and min_1-norm(S) denote the maximum l1-norm length and the minimum l1-norm length among the vectors in such a segment S, respectively. The segment Sj with a larger difference between max_1-norm(Sj) and min_1-norm(Sj) has a sparser data distribution. Therefore, in this case, the segment containing vectors with the largest range on their l1-norm length is selected to be split.
Table 1: A sample dataset D.
	
	f1
	f2
	f3
	f4

	d1
	0
	0
	1
	0

	d2
	0
	1
	0
	0

	d3
	0.45
	0.9
	0
	0

	d4
	0.65
	0
	0.76
	0

	d5
	0.6
	0
	0.6
	0.52

	d6
	0.5
	0.5
	0.5
	0.5


Table 2: The partitioning result on the sample dataset D.
	
	f1
	f3
	f2
	f4
	maxf
	l 1-norm
	assigned segment

	d6
	0.5
	0.5
	0.5
	0.5
	f1
	2
	S1

	d5
	0.6
	0.6
	0
	0.52
	f1
	1.72
	S1

	d3
	0.45
	0
	0.9
	0
	f2
	1.35
	S2

	d2
	0
	0
	1
	0
	f2
	1
	S2

	d4
	0.65
	0.76
	0
	0
	f3
	1.41
	S3

	d1
	0
	1
	0
	0
	f3
	1
	S3


Table 3: The pilot vectors of the segmentations for the sample dataset D.
	
	f1
	f3
	f2
	f4

	S1.pilot
	0.6
	0.6
	0.5
	0.52

	S2.pilot
	0.45
	0
	1
	0

	S3.pilot
	0.65
	1
	0
	0


Table 4: The postfix-based inverted index of the segment S1.
	
	Postfix-based inverted list

	f1
	Null

	f3
	Null

	f2
	(d6, 0.5)

	f4
	(d5, 0.52) -> (d6, 0.5)


Performing the above processing one time will increase 1 of the number of segments. The pilot vectors of the resultant two segments have to be recomputed. However, the resultant two segments remain their maxf values unchanged, which are the same with the maxf value of the segment before splitting.
2) Decrease the number of segments

Two segments are selected to be merged into one segment. At first, the smallest data segment Si is selected. Then another segment, denoted as Sc, should be selected to be merged with Si. Suppose that Si and Sc are selected to be merged to get the resultant segment denoted as Smerge. Smerge.pilot will be no less than both Si.pilot and Sc.pilot on each dimension. A larger value difference on Smerge.pilot with respect to Si.pilot and Sc.pilot implies that the vectors in Smerge will have wider range of feature values. It will cause the similarity estimation between segments less effective. Accordingly, the segment whose pilot vector has the smallest distance with Si.pilot is a better candidate to merge with Si.
In order to reduce the computation cost when selecting the segment Sc, only the data segment, whose size is less than the average size of all segments, are used as candidates. Besides, the differences between Si.pilot and Sc.pilot on the features maxf(Si) and maxf(Sc) are used to estimate the dissimilarity of two segments Si and Sc as follows:  

dis_similar(Si, Sc) =

max(|Si.pilot[maxf(Si)]-Sc.pilot[maxf(Si)]|, |Si.pilot[maxf(Sc)]-Sc.pilot[maxf(Sc)|).

Accordingly, the candidate segment has the least dissimilarity with Si is selected to be merged with Si to get a new segment Smerge.
The pilot vector of the resultant segment Smerge is updated as follows:

Smerge.pilot[fk]= max(Si.pilot[fk], Sc.pilot[fk]) for k = 1,…, m.
Performing the above processing one time will decrease 1 of the number of segments.

We call the above partitioning method the max-d partitioning (MD) method. In order to prevent generating unbalanced sizes of segments, we proposed an alternative method to set an upper bound constraint on the segments for the MD method, which is called the max-d partitioning with balance constraint (BMD). We will compare the performance of the partitioning method in the experiments.
3.2 Find Intra-segment Similar Pairs
For each data segment Si, we have to find all the intra-segment similar pairs in Si. In order to dynamically reduce the cost of similarity computation, an inverted list index is constructed for the data objects in each segment and the prefix filtering strategy [5] is applied. 
In our implementation, the boundary of constructing the inverted list for the postfix vector of a data dj is determined according to the maximum similarity estimated between dj and Si.pilot. For example, the segment S1 in the sample dataset has S1.pilot = <0.6, 0.6, 0.5, 0.3>. The data d5 in S1 has feature vector = <0.6, 0.6, 0, 0.52>. Let the similarity threshold t set to be 0.8. The partial inner product results between d5 and S1.pilot on the first 3 dimensions, i.e. 0.72, is less than t and on the 4 dimensions is larger than t. Therefore, the prefix vector of d5 consists of its first 3 dimensions: <0.6, 0.6, 0> and the postfix vector of d5 consists of the last dimension: <0.3>. Accordingly, the constructed postfix-based inverted index of the segment S1 is shown in Table 4. 
Due to space limit, please refer [5] about the detailed constructing process of inverted list and the prefix filtering strategy. From the sample dataset, the discovered intra-segment similar pairs are (d5, d6) and (d2, d3).
3.3 Dissimilar segment pairs pruning strategy
A dissimilar segment pair (Si, Sj) means that for each data d in segment Si and each data d’ in segment Sj, Sim(d, d’) < t. To discover dissimilar segment pairs in early stage can eliminate the similarity computations on the data pairs across the dissimilar segment pairs. Therefore, we estimate the upper bound of similarity between two segments to prune some dissimilar segment pairs.
For each data segments S and S’, the similarity between S.pilot and S’.pilot is computed. According to the definition of the pilot vector of a segment, for each d in S and each d’ in S’, Sim(d, d’) ( Sim(S.pilot, d’) ( Sim(S.pilot, S’.pilot). Therefore, if Sim(S.pilot, S’.pilot) < t, it implies Sim(d, d’) < t for each d in S and each d’ in S’. Accordingly, (S, S’) is a dissimilar segment pair and is removed from the candidate segment pairs.
For example, according to the partitioning result shown in Table 2 and the pilot vectors of the 3 segments shown in Table 3, the upper bounds of the similarity of the segment pairs are computed as follows:

Sim(S1.pilot, S2.pilot) = 0.6 * 0.45 + 0.5 * 1 = 0.77
Sim(S1.pilot, S3.pilot) = 0.6 * 0.65 + 0.6 * 1 = 0.99
Sim(S2.pilot, S3.pilot) = 0.45 * 0.65 = 0.2925

Suppose that the similarity threshold t = 0.8, (S1, S2) and (S2, S3) are discovered to be dissimilar segment pairs and pruned. Only the segment pair (S1, S3) is remained as a candidate segment pair to generate inter-segment data pairs.
To speed up the computation, we also construct an inverted list index for the pilot vectors of segments. The strategy described in 3.2 is used to find similar pilot vector pairs such that the corresponding segment pairs are candidate segment pairs.
3.4 Inter-segment data pairs pruning strategy
Let (Sk, Sl) denote a segment pair where Sim(Sk.pilot, Sl.pilot) ( t, such that the segment pair is remained after performing the pruning strategy introduced in the previous subsection. It is possible to find a data object d ( Sk and a data object d’ ( Sl such that (d, d’) is a similar pair. To prevent from performing similarity computations for all inter-segment data pairs between Sk and Sl, an efficient pruning strategy is proposed to prune part of the dissimilar objects pairs as follows. 
Let max_v(Sk) denote the maximum feature value contained in the data vectors in segment Sk.max_v(Sk) is obtained by computing {v | ( i (m(i(1), v=Sk.pilot[fi] ( ( m(j(1 ( j( i, v(Sk.pilot[fj] }. For a data object dx in Sl, if ||dx||1 < t/max_v(Sk), it implies that Sim(dx, dy) < t for all dy in Sk. Therefore, when generating inter-segment data pairs between Sk and Sl, it is not necessary to generate data pair consisting dx.
   For example, after performing the pruning strategy described in section 3.3 on the sample dataset, the inter-segment data pairs are generated between segments S1 and S3. From Table 3, we obtain max_v(S1) = 0.6 and max_v(S3) =1. Accordingly, any data object in S3 with l1-norm length less than 0.8/0.6 = 1.3 is dissimilar with all data objects in S1. It implies that the data object d1 can be pruned. Only the data pairs (d4, d6) and (d4, d5) are generated for further computing the similarities. Finally, the discoverer inter-segment similar pair is (d4, d5).
4. A MapReduce Framework for Solving APSS
In this section, we will introduce the proposed MapReduce framework for performing the 4 tasks of the maximum-dimension partitioning approach. At first, the partitioning is performed centralized. After that, the other three tasks can be performed in parallel as described in the following three sub-sections.
4.1 Parallel Processing for Finding Intra-segment Similar Pairs

    For each segment, the task of finding the intra-segment similar pairs is performed independently by 2 stages of MapReduce tasks. The first stage is to construct the inverted list index for the data objects in the segment, and the second stage is to perform similarity computation for the intra-segment data pairs.
1) Index construction
<Mapper>:

Input: the set of data objects in the database, where each object has its object id di, the assigned segment id Sk, and the list of non-zero feature and value on its vector. 
The mappers output the <key: value> pair for each non-zero feature fj on a vector of object di. The feature id fj is the key. Besides, the feature value, object id di, and the segment id Sk are combined to be the value.
    For example, the object d3 is assigned to segment S2, which has non-zero features f1=0.45 and f2=0.9. Two <key: value> pairs are generated: <f1: (0.45, d3, S2)> and <(f2: (0.9, d3, S2)>. 
<Reducer>:

The reducers combine the <key: value> pairs with the same key value fi to generate the inverted list of the feature fi.
By collecting the results of the reducers, the inverted list of the dataset in a segment is constructed.
2) Find intra-segment similar pairs 
<Mapper>:

Input: the inverted list of each feature. 

Let the inverted list of a feature fi be denoted as <(di1, di1.fi, di1.seg_id), (di2, di2.fi, di2.seg_id), …, (dim, dim.fi, dim.seg_id)>. For each dik and dil in the inverted list, if dik.seg_id is equal to dil.seg_id, a key value pair: <(dik,dil): dik.fi×dil.fi> is generated. 
<Reducer>:

The reducers combine the <key: value> pairs with the same key value (dik,dil) to compute the sum of the dik.fi×dil.fi on various feature to get Sim(dik, dil). If Sim(dik, dil) ( t, (dik, dil) is output as a similar pair with its similarity value.
The similar pairs with similarity value no less than t are intra-segment similar pairs.

4.2 Parallel Processing for Pruning Dissimilar Segment Pairs
    This task is to generate the candidate segment pairs (Si, Sj) which are possible to find inter-segment similar pairs. The MapReduce processing described in 4.1 is used to find the candidate segment pairs, where the pilot vector of each segment is considered a data object. Besides, all their corresponding segment ids are set to be the same.
4.3 Parallel processing for Finding Inter-segment Similar Pairs
     After finding the candidate segment pairs (Si, Sj) which are possible to find inter-segment similar pairs, the strategy introduced in 3.4 is used to prune some inter-segment dissimilar object pairs centralized. Then the following MapReduce approach is used to find the inter-segment similar pairs.

<Mapper>:

Input: the candidate object pairs (di, dj) and the individual non-zero feature values of the two objects. <fi1=di.fi1, fi2=di.fi2, …, fin=di.fin, fj1=dj.fj1, fj2=dj.fj2, …, fjn=dj.fjm>.
Output: Generate the key value pairs <(di, dj, fik): di.fik> for k=1…n, and <(di, dj, fjk): dj.fjk> for k=1…m.
< Combiner >:
The key value pairs <(di, dj, f): di.f> with the same key value are collected, which gets the feature value for both objects in the data pair (di, dj). Accordingly, the values of the same key value are multiplied if both di and dj have non-zero values on f. In addition, the key value pair <(di, dj): di.f( dj.f > is output.
<Reducer>:

The key value pairs <(di, dj): di.f(dj.f > with the same (di, dj) pair are collected. Therefore, the summation of the multiplication result on various feature values is computed to get Sim(di, dj). If Sim(dik, dil) ( t, (dik, dil) is output as a similar pair with its similarity value.
The similar pairs with similarity value no less than t are inter-segment similar pairs.

5. Performance Study
5.1 Experimental environment

The dataset used in the experiments is a real dataset, which consists of the collected documents posted in Yahoo! Answer. The vector of each document is represented by the TF-IDF of the bag of words in the document. 

We performed the experiments on the following two types of hardware:

1) A client running Windows7 on 2 cores (2.4GHz), 4 GB RAM.

2) The Hadoop parallelized environment consists of 1 master and 2 slave nodes, where each node running Ubuntu Linux on 2 core (3.4GHz) and 16G memory.
In addition to our approach, the following related works are also implemented for comparison.

(1) Prefix-filtering approach (PF): an inverted-list index structure is constructed for prefix-filtering when computing similarity as the strategy used in [2].

(2) The PSS algorithm (PSS): a partition-based method proposed in [1], where the initial partitioning is based on the descending order of the l1-norm length of data.

The proposed approach and related works are implemented by Java language. 
5.2 Performance Evaluation on the Partitioning Methods

In the first part of experiments, we would like to compare the pruning effectiveness of the partitioning methods. The following three partitioning methods are compared:

1) the maximum dimension partitioning method (MD), 

2) the maximum dimension partitioning method with balance constraint (BMD), and

3) the l1-norm length partitioning (1N) method, where even size partitioning is performed based on the descending order of the l1-norm length of data. This method is the initial partitioning result of the PSS algorithm [1].
In this part of experiments, a set consisting of 7800 data vectors, where each vector has 11800 dimensional features, was used. In the dataset, there are 299 similarity pairs when the similarity threshold t is set to be 0.8.
[Exp. 1-1] Compare the percentage of similar data pairs discovered from intra-segment data pairs. 

The goal of this experiment is to observe the effectiveness that the partitioning methods can group similar pairs in the same segment. Therefore, the percentages of similar pairs discovered from intra-segment data pairs are computed for the MD, BMD, and 1N methods, respectively. According to the results shown in Fig. 1(a), by using the MD method, about 2/3 similar pairs can be discovered from the intra-segment data pairs when the number of segments is set from 2000 to 3000. It indicates that the MD method can effectively group most similar pairs within segments. Besides, the BMD method keeps more similar pairs within the same segments than the 1N method. 
[Exp. 1-2] Compare the percentage of pruned dissimilar segment pairs among all segment pairs.

The goal of this experiment is to observe the effectiveness that the partitioning methods combined with the pruning strategy by computing similarity of pilot vectors to prune dissimilar segment pairs. According to the number of the remained candidate segment pairs, we can compute the percentage of pruned segment pairs among all possible segment pairs as shown in Fig. 1(b). It shows that the BMD method can prune 99.7% segment pairs, which is better than both the MD and 1N methods when the number of segments is less than 3200. It indicates that fewer inter-segment data pairs are generated by using the BMD method.

The pruning effect of the MD method is not as good as the other twos is because that the MD method may generate some large segments whose pilot vectors tend to similar with the pilot vectors of other segments.
[Exp. 1-3] Compare the percentage of pruned data pairs by the partitioning methods combined with the pruning strategies.

In this experiment, in addition to the MD, BMD, and 1N method, we also observe the pruning effectiveness of the PSS method [1]. As the result shown in Fig 1(c), the pruning effectiveness of the MD, BMD, and 1N are consistent with the results shown in Fig. 1(b) because most data pairs are generated from the inter-segment data pairs. It shows the pruning effectiveness of using pilot vector is much better than the strategy proposed in PSS for high dimensional data.
In the second part of experiments, we compared the response time for the proposed methods and the related works.

[Exp. 2-1] Compare the response time of algorithms in the centralized environment by varying the number of segments.
At first, we compare the response time of the three different partitioning methods: MD, SMD, and 1N. As shown in Fig. 1(d), the response time of the MD method is longer than SMD and 1N methods when the number of segments is 2000~3200. The reason is that, as the result shown in Exp. 1-2, the pruning effect of MD is not as good as SMD or 1N when the sizes of segments are not balanced. The response time of SMD method is slightly shorter than 1N because SMD has better pruning effectiveness on data pairs. Besides, the 1N method has additional cost to perform sorting on l1-norm lengths of data before partitioning. On the other hand, the response time of PSS is much high than SMD because the pruning strategy of PSS didn’t work well for high dimensional dataset.
   In this experiment, IL has a slightly faster.response time than SMD. It indicates that computing similarity pairs by using the dynamic pruning strategy of inverted list is efficient in a centralized environment. However, in the following experiments, we will show the benefit of the proposed SMD on larger datasets in a parallel environment.
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Fig. 1: The results of experiments
[Exp. 2-2] Compare the response time of SMD and IL in the parallelized environment by varying the number of data.

We implemented the MapReduce version for SMD and IL. Another dataset consisting of 49885 data with 30000 dimensions is used. The threshold of similarity is set to be 0.8, where 5047 similar data pairs exist in the dataset.

As the result shown in Fig. 1(e), the response time of BMD grows linearly. However, the growing trend of the response time of IL increases as the size of dataset increases. Therefore, the response time of SMD is about half of the one of IL. The SMD can save much more response time than IL when the size of dataset increases.

Fig. 1(f) shows the size of file storing the <key, value> pairs generated by the Mappers for SMD and IL, respectively. It indicates that the response time of the MapReduce algorithms has strong dependence with the number of the <key, value> pairs generated by the Mappers. As the results shown in the first part of experiments, the SMD method can effectively prune many dissimilar segment pairs to prevent generating the inter-segment data pairs between these segment pairs. Accordingly, in the MapReduce version of SMD, the number of <key, value> pairs generated by the Mapper is much less than the one of IL. It causes less I/O and communication cost among the processors. That is an important effect influencing the response time in the parallel environment.
6. Conclusion and Future Works

In this paper, for solving APSS in parallel, we proposed a new partitioning approach based on the maximum dimension of data vectors. Moreover, a pilot-vector is designed to represent each segment for estimating the upper bound of similarity between each segment pair. The proposed pruning strategy on segment pairs effectively reduces the number of candidate data pairs in an early stage. Besides, the prefix filtering strategy is used to improve the efficiency of computing similarity of both segment pairs and intra-segment data pairs. The results of experiment show the proposed BMD approach improves the weakness of the PSS method performed on high dimensional data sets. Moreover, we implemented a MapReduce framework for the proposed partitioning method. It reveals the benefit of candidate pruning achieved by BMD to effectively reduce the response time. Furthermore, Instead of using a global inverted index to perform computation filtering, this approach prevents the problem of excessive I/O and communication overhead of the intermediate partial results.in a MapReduce framework.
The proposed partitioning method can combine with a load assignment policy to achieve further load balance in a parallel environment. Another future work is to extend the proposed partitioning method to support incremental all pairs similarity search efficiently.
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工作表1

				MD		BMD		1N		PSS		MD		BMD		1N		PSS

		2000		86.804554167		99.6876029		99.5334839115		0.1073316434		0.8680455417		0.996876029		0.9953348391		0.1073316434

		2100		86.9620102511		99.7394439129		99.5944746368		0.1074302097		0.8696201025		0.9973944391		0.9959447464		0.1074302097

		2200		87.1538034133		99.7850151729		99.6482619402		10.747837494		0.8715380341		0.9978501517		0.9964826194		0.1074783749

		2300		87.4380015847		99.8185697706		99.7099430894		10.7505202837		0.8743800158		0.9981856977		0.9970994309		0.1075052028

		2400		87.7150423624		99.8460782283		99.7748823814		10.7525816919		0.8771504236		0.9984607823		0.9977488238		0.1075258169

		2500		88.0092188019		99.86522927		99.8541430361		10.7545543314		0.880092188		0.9986522927		0.9985414304		0.1075455433

		2600		88.3598127308		99.8711373253		99.9398640851		10.7565269709		0.8835981273		0.9987113733		0.9993986409		0.1075652697

		2700		88.457599758		99.9438258028		99.9432636005		10.76715621		0.8845759976		0.999438258		0.999432636		0.1076715621

		2800		88.5794431239		99.9490204201		99.9474751858		10.7734949583		0.8857944312		0.9994902042		0.9994747519		0.1077349496

		2900		88.6672584585		99.9503223622		99.9548988858		10.7768254313		0.8866725846		0.9995032236		0.9995489889		0.1077682543

		3000		89.4103846318		99.9519202002		99.9595806168		10.7795279474		0.8941038463		0.999519202		0.9995958062		0.1077952795

		3100		96.3306867087		99.9528144634		99.964101249		10.7814907237		0.9633068671		0.9995281446		0.9996410125		0.1078149072

		3200		98.6902923123		99.9538566746		99.9673166514		10.7829406137		0.9869029231		0.9995385667		0.9996731665		0.1078294061

		3300		99.4337472589		99.9548725839		99.9699435496		10.7841340606		0.9943374726		0.9995487258		0.9996994355		0.1078413406

		3400		99.6704804363		99.9559345215		99.9722416746		10.785186135		0.9967048044		0.9995593452		0.9997224167		0.1078518613

		3500		99.8507205066		99.9569964591		99.9746778844		10.7861921811		0.9985072051		0.9995699646		0.9997467788		0.1078619218

		3600		99.8931881471		99.957759213		99.977005599		10.7871785009		0.9989318815		0.9995775921		0.999770056		0.107871785

		3700		99.9352645474		99.9587718347		99.9790505686		10.7881648206		0.9993526455		0.9995877183		0.9997905057		0.1078816482

		3800		99.9475803933		99.9597745931		99.9811086891		10.7891511404		0.9994758039		0.9995977459		0.9998110869		0.1078915114

		3850		0.9994938865		0.9996043214		0.9998190432		0.107896443		0.9994938865		0.9996043214		0.9998190432		0.107896443

		3900		0.9995125608		0.9996093516		0.9998280516		0.1079013746		0.9995125608		0.9996093516		0.9998280516		0.1079013746

		3950		0.9995492848		0.9998192076		0.9998279201		0.1079156105		0.9995492848		0.9998192076		0.9998279201		0.1079156105

		4000		0.9996061954		0.9998213775		0.9998315366		0.1079218243		0.9996061954		0.9998213775		0.9998315366		0.1079218243

		4050		0.9996599498		0.9998237447		0.9998353175		0.1079459234		0.9996599498		0.9998237447		0.9998353175		0.1079459234

		4100		0.9996978245		0.9998257831		0.9998382764		0.1079629867		0.9996978245		0.9998257831		0.9998382764		0.1079629867

		4150		0.9997206085		0.9998277557		0.9998418929		0.1079805432		0.9997206085		0.9998277557		0.9998418929		0.1079805432

		4200		0.9997275785		0.9998298598		0.9998442272		0.1080016176		0.9997275785		0.9998298598		0.9998442272		0.1080016176

		4250		0.9997316882		0.9998318325		0.9998479095		0.1080151301		0.9997316882		0.9998318325		0.9998479095		0.1080151301

		4300		0.9997377376		0.9998337394		0.9998506054		0.1080255523		0.9997377376		0.9998337394		0.9998506054		0.1080255523

		4350		0.9997423733		0.9998356463		0.9998532027		0.1080352839		0.9997423733		0.9998356463		0.9998532027		0.1080352839

		4400		0.9997462199		0.9998372901		0.9998562932		0.1080427471		0.9997462199		0.9998372901		0.9998562932		0.1080427471

		4450		0.9997501652		0.999839197		0.9998582001		0.1080520843		0.9997501652		0.999839197		0.9998582001		0.1080520843

		4500		0.999758253		0.9998413012		0.9998606659		0.1080632625		0.999758253		0.9998413012		0.9998606659		0.1080632625

		4550		0.9997644011		0.9998431752		0.9998642495		0.1080715476		0.9997644011		0.9998431752		0.9998642495		0.1080715476

		4600		0.9997720944		0.9998449505		0.9998677016		0.1080772354		0.9997720944		0.9998449505		0.9998677016		0.1080772354

		4650		0.999777815		0.9998467259		0.9998704962		0.1080823972		0.999777815		0.9998467259		0.9998704962		0.1080823972

		4700		0.9997858371		0.9998488301		0.9998733565		0.108088874		0.9997858371		0.9998488301		0.9998733565		0.108088874

		4750		0.9998008949		0.9998506054		0.9998757237		0.1080931809		0.9998008949		0.9998506054		0.9998757237		0.1080931809

		4800		0.9998160514		0.9998523151		0.9998912089		0.1080976194		0.9998160514		0.9998523151		0.9998912089		0.1080976194

		4850		0.9998246652		0.9998540904		0.9998927213		0.1081034058		0.9998246652		0.9998540904		0.9998927213		0.1081034058

		4900		0.9998312407		0.9998562932		0.9998944638		0.1081092579		0.9998312407		0.9998562932		0.9998944638		0.1081092579

		4950		0.9998462985		0.9998591207		0.9998845677		0.1081132032		0.9998462985		0.9998591207		0.9998845677		0.1081132032

		5000		0.9998530712		0.9998619152		0.9998867047		0.1081164581		0.9998530712		0.9998619152		0.9998867047		0.1081164581

		5050		0.9998574768		0.9998637564		0.9998891377		0.1081203376		0.9998574768		0.9998637564		0.9998891377		0.1081203376

		5100		0.9998682277		0.999865729		0.9998909459		0.1081242171		0.9998682277		0.999865729		0.9998909459		0.1081242171

		5150		0.9998727319		0.9998677016		0.9998933131		0.1081277679		0.9998727319		0.9998677016		0.9998933131		0.1081277679

		5200		0.9998749347		0.9998711209		0.9998955816		0.1081312857		0.9998749347		0.9998711209		0.9998955816		0.1081312857

		5250		0.9998767429		0.9998733565		0.9998972912		0.1081346392		0.9998767429		0.9998733565		0.9998972912		0.1081346392

		5300		0.9998785183		0.999875921		0.9998994611		0.10813819		0.9998785183		0.999875921		0.9998994611		0.10813819

		5350		0.999880195		0.9998781566		0.9999016968		0.1081408859		0.999880195		0.9998781566		0.9999016968		0.1081408859

		5400		0.9998818718		0.999880195		0.9999041297		0.1081435819		0.9998818718		0.999880195		0.9999041297		0.1081435819

		5450		0.9998836143		0.9998825293		0.9999060037		0.1081459161		0.9998836143		0.9998825293		0.9999060037		0.1081459161

		5500		0.9998854554		0.9998846992		0.9999076805		0.1081482504		0.9998854554		0.9998846992		0.9999076805		0.1081482504

		5550		0.9998870664		0.9998873952		0.9999094887		0.1081508806		0.9998870664		0.9998873952		0.9999094887		0.1081508806

		5600		0.9998887103		0.9998896637		0.9999114942		0.1081530176		0.9998887103		0.9998896637		0.9999114942		0.1081530176

		5650		0.9998903541		0.9998914062		0.999913434		0.1081550889		0.9998903541		0.9998914062		0.999913434		0.1081550889

		5700		0.9998921295		0.9998934775		0.9999152423		0.1081578177		0.9998921295		0.9998934775		0.9999152423		0.1081578177

		5750		0.9998941021		0.999896272		0.9999170505		0.1081599219		0.9998941021		0.999896272		0.9999170505		0.1081599219

		5800		0.9998961077		0.9999002831		0.9999191218		0.1081619274		0.9998961077		0.9999002831		0.9999191218		0.1081619274

		5850		0.9998979488		0.9999027818		0.9999208314		0.1081642946		0.9998979488		0.9999027818		0.9999208314		0.1081642946

		5900		0.9998997899		0.9999050503		0.999922804		0.1081661686		0.9998997899		0.9999050503		0.999922804		0.1081661686

		5950		0.9999015982		0.9999076147		0.9999246452		0.1081680097		0.9999015982		0.9999076147		0.9999246452		0.1081680097

		6000		0.9999035379		0.9999099161		0.9999266507		0.1081699495		0.9999035379		0.9999099161		0.9999266507		0.1081699495

		6050		0.9999051489		0.9999125134		0.9999285576		0.1081718235		0.9999051489		0.9999125134		0.9999285576		0.1081718235

		6100		0.9999071544		0.999915045		0.9999305302		0.108173566		0.9999071544		0.999915045		0.9999305302		0.108173566

		6150		0.9999106066		0.9999172149		0.9999324371		0.1081752756		0.9999106066		0.9999172149		0.9999324371		0.1081752756

		6200		0.9999129408		0.9999196149		0.9999375331		0.1081769195		0.9999129408		0.9999196149		0.9999375331		0.1081769195

		6250		0.9999147491		0.9999214232		0.9999358892		0.108178662		0.9999147491		0.9999214232		0.9999358892		0.108178662

		6300		0.9999173793		0.9999239876		0.9999376975		0.1081803716		0.9999173793		0.9999239876		0.9999376975		0.1081803716

		6350		0.9999190889		0.9999266507		0.9999395057		0.1081821141		0.9999190889		0.9999266507		0.9999395057		0.1081821141

		6400		0.9999210287		0.9999282617		0.9999411825		0.1081838566		0.9999210287		0.9999282617		0.9999411825		0.1081838566

		6450		0.9999230013		0.9999309247		0.9999429907		0.1081855333		0.9999230013		0.9999309247		0.9999429907		0.1081855333

		6500		0.9999253027		0.9999326344		0.9999447661		0.1081871772		0.9999253027		0.9999326344		0.9999447661		0.1081871772

		6550		0.9999282288		0.99993487		0.99994641		0.1081888211		0.9999282288		0.99993487		0.99994641		0.1081888211

		6600		0.9999314837		0.9999367769		0.9999483168		0.1081904649		0.9999314837		0.9999367769		0.9999483168		0.1081904649

		6650		0.9999344426		0.9999386509		0.9999499607		0.1081921088		0.9999344426		0.9999386509		0.9999499607		0.1081921088

		6700		0.9999391112		0.9999418729		0.9999516046		0.1081937527		0.9999391112		0.9999418729		0.9999516046		0.1081937527

		6750		0.9999423332		0.9999438455		0.9999534128		0.1081953965		0.9999423332		0.9999438455		0.9999534128		0.1081953965

		6800		0.9999451277		0.9999460483		0.9999550567		0.1081970404		0.9999451277		0.9999460483		0.9999550567		0.1081970404

		6850		0.9999482182		0.9999482511		0.9999567663		0.1081986842		0.9999482182		0.9999482511		0.9999567663		0.1081986842

		6900		0.9999509142		0.9999503881		0.9999585088		0.1082003281		0.9999509142		0.9999503881		0.9999585088		0.1082003281

		6950		0.9999530183		0.9999529854		0.9999602513		0.108201972		0.9999530183		0.9999529854		0.9999602513		0.108201972

		7000		0.9999561088		0.9999553526		0.9999620596		0.1082036158		0.9999561088		0.9999553526		0.9999620596		0.1082036158

		7050		0.9999581143		0.9999578841		0.9999637692		0.1082052597		0.9999581143		0.9999578841		0.9999637692		0.1082052597

		7100		0.9999607774		0.9999600869		0.9999654459		0.1082069036		0.9999607774		0.9999600869		0.9999654459		0.1082069036

		7150		0.9999634075		0.9999620267		0.9999671556		0.1082085474		0.9999634075		0.9999620267		0.9999671556		0.1082085474

		7200		0.9999655117		0.9999640322		0.9999690296		0.1082101913		0.9999655117		0.9999640322		0.9999690296		0.1082101913

		7250		0.9999671227		0.9999662679		0.9999708378		0.1082118352		0.9999671227		0.9999662679		0.9999708378		0.1082118352

		7300		0.9999694241		0.9999683391		0.9999726789		0.108213479		0.9999694241		0.9999683391		0.9999726789		0.108213479

		7350		0.9999716597		0.9999702131		0.9999743557		0.1082151229		0.9999716597		0.9999702131		0.9999743557		0.1082151229

		7400		0.9999736653		0.999972383		0.9999760982		0.1082167668		0.9999736653		0.999972383		0.9999760982		0.1082167668

		7450		0.999975605		0.9999746845		0.9999777749		0.1082184106		0.999975605		0.9999746845		0.9999777749		0.1082184106

		7500		0.9999797476		0.9999767886		0.9999793859		0.1082200545		0.9999797476		0.9999767886		0.9999793859		0.1082200545

		7550		0.9999792215		0.9999789256		0.9999810955		0.1082216984		0.9999792215		0.9999789256		0.9999810955		0.1082216984

		7600		0.9999812599		0.999980964		0.999982838		0.1082233422		0.9999812599		0.999980964		0.999982838		0.1082233422

		7650		0.9999834627		0.9999835613		0.9999846134		0.1082249861		0.9999834627		0.9999835613		0.9999846134		0.1082249861

		7700		0.9999857641		0.9999859943		0.9999864217		0.10822663		0.9999857641		0.9999859943		0.9999864217		0.10822663

		7750		0.9999877696		0.9999879669		0.9999882628		0.1082282738		0.9999877696		0.9999879669		0.9999882628		0.1082282738

		7800		0.9999901368		0.9999899067		0.999990071		0.1082299177		0.9999901368		0.9999899067		0.999990071		0.1082299177
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工作表1

				BMD		IL		BMD		IL

		5000		62.361		62.945		62361		62945

		7800		78.431		99.855		78431		99855

		10000		96.834		154.376		96834		154376

		15000		148.487		294.056		148487		294056

		20000		239.974		607.962		239974		607962

		25000		315.244		852.573		315244		852573

		30000		468.371		1612.178		468371		1612178

		35000		589.494		2977.367		589494		2977367

		40000		830.619		3594.771		830619		3594771

		45000		1050.656		6460.972		1050656		6460972

		50000		1273.827		7597.345		1273827		7597345

				若要調整圖表資料範圍的大小，請拖曳範圍的右下角。				若要調整圖表資料範圍的大小，請拖曳範圍的右下角。
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工作表1

				BMD		IL		BMD		IL

		5000		0.06		0.71		60		710

		10000		0.28		3.3792		280		3379.2

		15000		0.73		9.216		730		9216

		20000		1.536		17.408		1536		17408

		25000		2.355		27.648		2355		27648

		30000		3.584		40.96		3584		40960

		35000		5.12		74.752		5120		74752

		40000		7.168		84.992		7168		84992

		45000		9.216		112.64		9216		112640

		50000		13.312		139.264		13312		139264

				若要調整圖表資料範圍的大小，請拖曳範圍的右下角。				若要調整圖表資料範圍的大小，請拖曳範圍的右下角。
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工作表1

				MD		BMD		1N		MD		BMD		1N		最大維度分群_Inverted_index		onenorm分群_invertedIndex

		2000		98.18875		99.76735		99.58705		1		1		1		36225		8259		4653

		2100		98.3817687075		99.8196371882		99.6688435374		1		1		1		35682		7302		3977

		2200		98.5539669421		99.8604958678		99.733553719		1		1		1		34994		6448		3376

		2300		98.7144801512		99.8894517958		99.7964461248		1		1		1		34002		5384		2924

		2400		98.8528125		99.9117361111		99.8530555556		1		1		1		33039		4232		2542

		2500		98.97536		99.927616		99.910016		1		1		1		32020		2812		2262

		2600		99.0888757396		99.9357692308		99.9650887574		1		1		1		30796		1180		2171

		2700		99.1639506173		99.9704801097		99.9686694102		1		1		1		30474		1142		1076

		2800		99.2344897959		99.9749234694		99.9728061224		1		1		1		30008		1066		983

		2900		99.2939120095		99.977098692		99.97921522		1		1		1		29691		874		963

		3000		99.3278		99.9792888889		99.9828666667		1		1		1		30249		771		932

		3100		99.5644120708		99.9806867846		99.9861602497		1		1		1		20930		665		928

		3200		99.7822070312		99.9821289062		99.9883007813		1		1		1		11151		599		915

		3300		99.8873094582		99.9834710744		99.9898806244		1		1		1		6136		551		900

		3400		99.93		99.9847058824		99.9911418685		1		1		1		4046		512		884

		3500		99.962644898		99.9857959184		99.9923755102		1		1		1		2288		467		870

		3600		99.9734567901		99.9866820988		99.9934259259		1		1		1		1720		426		863

		3700		99.9827611395		99.9875821768		99.9942439737		1		1		1		1180		394		850

		3800		99.9866759003		99.9884210526		99.9950415512		1		1		1		962		358		836

		3850		0		0		0		0		0		0				942		349		824

		3900		0		0		0		0		0		0				917		335		819

		3950		0		0		0		0		0		0				869		366		433

		4000		0		0		0		0		0		0				772		363		431

		4050		0		0		0		0		0		0				695		356		426

		4100		0		0		0		0		0		0				638		352		425

		4150		0		0		0		0		0		0				592		341		425

		4200		0		0		0		0		0		0				583		344		422

		4250		0		0		0		0		0		0				583		335		421

		4300		0		0		0		0		0		0				575		332		420

		4350		0		0		0		0		0		0				574		332		419

		4400		0		0		0		0		0		0				573		325		419

		4450		0		0		0		0		0		0				572		336		418

		4500		0		0		0		0		0		0				556		330		416

		4550		0		0		0		0		0		0				544		319		415

		4600		0		0		0		0		0		0				527		309		415

		4650		0		0		0		0		0		0				524		314		414

		4700		0		0		0		0		0		0				516		309		411

		4750		0		0		0		0		0		0				485		310		410

		4800		0		0		0		0		0		0				460		308		410

		4850		0		0		0		0		0		0				457		312		409

		4900		0		0		0		0		0		0				453		309		405

		4950		0		0		0		0		0		0				422		312		409

		5000		0		0		0		0		0		0				410		309		409

		5050		0		0		0		0		0		0				411		303		414

		5100		0		0		0		0		0		0				394		306		414

		5150		0		0		0		0		0		0				387		301		417

		5200		0		0		0		0		0		0				384		301		410

		5250		0		0		0		0		0		0				384		310		409

		5300		0		0		0		0		0		0				384		309		405

		5350		0		0		0		0		0		0				386		305		409

		5400		0		0		0		0		0		0				389		303		407

		5450		0		0		0		0		0		0				389		301		404

		5500		0		0		0		0		0		0				387		302		406

		5550		0		0		0		0		0		0				388		302		399

		5600		0		0		0		0		0		0				388		300		397

		5650		0		0		0		0		0		0				388		299		398

		5700		0		0		0		0		0		0				387		298		406

		5750		0		0		0		0		0		0				384		297		404

		5800		0		0		0		0		0		0				386		294		390

		5850		0		0		0		0		0		0				385		294		391

		5900		0		0		0		0		0		0				384		293		388

		5950		0		0		0		0		0		0				381		293		379

		6000		0		0		0		0		0		0				381		298		374

		6050		0		0		0		0		0		0				382		298		370

		6100		0		0		0		0		0		0				379		298		369

		6150		0		0		0		0		0		0				368		299		369

		6200		0		0		0		0		0		0				366		299		367

		6250		0		0		0		0		0		0				367		299		366

		6300		0		0		0		0		0		0				359		301		359

		6350		0		0		0		0		0		0				363		301		356

		6400		0		0		0		0		0		0				362		301		358

		6450		0		0		0		0		0		0				360		301		353

		6500		0		0		0		0		0		0				359		301		356

		6550		0		0		0		0		0		0				355		301		354

		6600		0		0		0		0		0		0				346		301		358

		6650		0		0		0		0		0		0				34		301		360

		6700		0		0		0		0		0		0				326		301		354

		6750		0		0		0		0		0		0				324		301		353

		6800		0		0		0		0		0		0				323		302		352

		6850		0		0		0		0		0		0				324		301		351

		6900		0		0		0		0		0		0				322		302		347

		6950		0		0		0		0		0		0				323		302		342

		7000		0		0		0		0		0		0				317		302		341

		7050		0		0		0		0		0		0				315		302		334

		7100		0		0		0		0		0		0				309		302		328

		7150		0		0		0		0		0		0				305		303		327

		7200		0		0		0		0		0		0				305		302		326

		7250		0		0		0		0		0		0				306		301		328

		7300		0		0		0		0		0		0				301		300		324

		7350		0		0		0		0		0		0				299		300		323

		7400		0		0		0		0		0		0				308		300		319

		7450		0		0		0		0		0		0				313		300		317

		7500		0		0		0		0		0		0				315		301		316

		7550		0		0		0		0		0		0				314		301		314

		7600		0		0		0		0		0		0				309		301		315

		7650		0		0		0		0		0		0				310		302		310

		7700		0		0		0		0		0		0				303		302		304

		7750		0		0		0		0		0		0				307		302		302

		7800		0		0		0		0		0		0				299		301		300

				若要調整圖表資料範圍的大小，請拖曳範圍的右下角。						若要調整圖表資料範圍的大小，請拖曳範圍的右下角。






